

CPUC Technical Workshop on Pumped Storage

January 16, 2014

Vladimir KORITAROV

Center for Energy, Environmental, and Economic Systems Analysis Decision and Information Sciences Division (DIS) ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, IL 60439

Tel: 630-252-6711 Koritarov@ANL.gov

Project Summary & Team

Project Team led by Argonne National Laboratory was awarded funding by the U.S. Department of Energy for the study: Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

- Team members:
 - Argonne National Laboratory (Argonne) Project Lead
 - Siemens Energy, Inc.
 - Energy Exemplar, LLC.
 - MWH Americas, Inc.
 - National Renewable Energy Laboratory (NREL)

SIEMENS

Project website: http://www.dis.anl.gov/psh

Project Goals & Objectives

Develop detailed models of advanced PSH plants to analyze their technical capabilities to provide various grid services and to assess the value of these services under different market structures.

Main Objectives:

- Improve modeling representation of advanced PSH plants
- Quantify their capabilities to provide various grid services
- Analyze the value of these services under different market conditions and levels of variable renewable generation
- Provide information on full range of benefits and value of PSH

Analysis Addressed Wide Range of Control Issues & Timeframes

• Analysis aimed to capture PSH dynamic responses and operational characteristics across different timescales, from a fraction of a second to days/weeks.

Advanced Technology Modeling

Model Development

- Technology Modeling TFG has developed vendor-neutral dynamic models for advanced PSH technologies and described them in three reports:
 - ✓ Review of <u>existing CH and PSH models</u> in use in the United States
 - ✓ Dynamic simulation models for <u>adjustable speed</u> PSH
 - ✓ Dynamic simulation models for ternary PSH units
- Draft models and reports were reviewed by the AWG members
- Reports have been cleared for unlimited distribution and are now publicly available.

Integration and Testing of Dynamic Models

Model Integration and Testing

- Dynamic models for adjustable speed PSH and ternary units were coded and integrated into the PSS®E model
- Testing of these models for both generating and pumping mode of operation was performed using PSS®E test cases and dynamic cases for Western Interconnection (WI)
- Additional AGC studies have been performed for SMUD balancing authority
- Published a report on frequency regulation capabilities of advanced PSH technologies

PSH Provides Various Services and Contributions to the Power System

	PSH Contribution
1	Inertial response
2	Governor response, frequency response, or
	primary frequency control
3	Frequency regulation, regulation reserve, or
	secondary frequency control
4	Flexibility reserve
5	Contingency spinning reserve
6	Contingency non-spinning reserve
7	Replacement/Supplemental reserve
8	Load following
9	Load leveling / Energy arbitrage
10	Generating capacity
11	Integration of variable energy resources (VER)
12	Portfolio effects
13	Reduced cycling of thermal units
14	Reduced transmission congestion
15	Voltage support
16	Improved dynamic stability
17	Reduced environmental emissions
18	Energy security
19	Transmission deferral
20	Black start capability

Adjustable Speed PSH Technologies Provide Even More Flexibility than Conventional Fixed-Speed PSH

Adjustable speed PSH with doubly-fed induction machines (DFIM):

Ternary units with hydraulic short circuit:

Additional Benefits of Adjustable Speed PSH

- More flexible and efficient operation in generation mode
 - -Minimum unit power output as low as 20%-30%
 - Increased efficiency and lifetime of the turbine at partial loads by operating at optimal speed
- Frequency regulation capabilities also available in the pumping mode
- Electronically decoupled control of active and reactive power
 - Provides more flexible voltage support
- Improved dynamic behavior and stability of power system
 - -Improved transient stability in case of grid faults (e.g., short circuit faults in the transmission system)
 - Reduced frequency drops in case of generator outages
- Better compensation of variability of renewable energy sources
 - -More flexible and quicker response in generating (turbine) mode
 - -Variable power in pumping mode to counterbalance variability of wind
 - -Excellent source of frequency regulation during the off-peak hours

PLEXOS Model was Used for Production Cost and Revenue Simulations

- Focus on western U.S. (several levels of geographical scope, including entire WI, CAISO/California, and individual balancing authority - SMUD)
- A "future year" (FY) representation of the WI system is largely based on WECC's longterm projections for 2022
- Simulation Period:
 - DA simulations (hourly time step) for entire year to determine maintenance schedule of thermal units and annual-level PSH economics
 - –DA-HA-RT sequential simulations (hourly and 5-minute time step) for typical weeks (third week in January, April, July, and October) to analyze PSH operation under conditions of variability and uncertainty of renewable resources

PLEXOS Inputs were Based on TEPPC 2022 Common Case

- WECC's TEPPC 2022 case served as foundation for building FY cases (certain case parameters and data varied depending on scenario assumptions)
- Both cost-based and marketbased approaches were used in analysis
- Two levels of variable energy resources were analyzed:
 - Base RE scenario (RPS mandate)
 - High RE scenario (High Wind from WWSIS-2)
- PLEXOS simulations of WI and California were performed at nodal (bus) level

TEPPC Load Bubbles

- 39 load regions in WI
- 8 spinning reserve sharing groups
- 20 flexibility & regulation reserve sharing groups

PLEXOS Modeling of California in 2022

Simulation runs for California were performed using market-based approach (cost-based approach was applied for WI and SMUD):

California simulations:

- Annual runs for Base and High-Wind scenarios (DA runs with hourly time step and co-optimization of energy and ancillary services):
 - Without PSH plants
 - With existing conventional (fixed-speed) PSH plants in California
 - With existing FS PSH and 2 adjustable speed PSH (at Iowa Hill and Eagle Mountain locations)
- Weekly runs for four typical weeks in different seasons (January, April, July, and October) applying three-stage approach (DA-HA-RT) and cooptimization of energy and ancillary services:
 - Without PSH plants
 - With existing conventional (fixed-speed) PSH plants
 - With existing fixed-speed PSH and 2 adjustable speed PSH (at Iowa Hill and Eagle Mountain locations)

California: System Production Costs in 2022

Baseline RE scenario:

Base Renewable	Total Generation	PSH Generation	Production Cost	Annual Cost Reduction		Annual Reduction of PSH Ca	per kW
Scenario						Total PSH	\$/kw-
	GWh	GWh	\$ Million	\$ Million	%	MW	year
No PSH	265,538	-	5,078		_	-	-
With FS PSH	267,001	2,725	4,967	111	2.18%	2626	42.10
With FS&AS							
PSH	269,374	5,313	4,907	171	3.36%	4425	38.60

Annual operating Costs savings

High-Wind RE scenario:

High-Wind Renewable	Total Generation	PSH Generation	Production Cost	Annual Cost Reduction		Annual Reduction of PSH Ca	per kW
Scenario			4	4		Total PSH	\$/kw-
	<u>GWh</u>	<u>GWh</u>	\$ Million	\$ Million	%	MW	year
No PSH	253,872	-	4,120	-	-	_	-
With FS PSH	256,069	5,299	3,934	186	4.52%	2626	70.91
With FS&AS							
PSH	257,018	9,456	3,745	376	9.12%	4425	84.97

California: Curtailments of RE Generation in 2022

■ Baseline RE scenario:

CA Renewable Curtailment in the Base Renewable Scenario											
		Renewable Curtailment Reduction									
Case	GWh GWh %										
No PSH	155	•	0%								
With FS PSH	46	108	70%								
With FS&AS PSH	14	141	AS PSH 14 141 91%								

High-Wind RE scenario:

CA Renewable Curtailment in the High-Wind Renewable Scenario							
	Renewable Curtailment Reduction						
Case	GWh GWh %						
No PSH	618	-	0%				
With FS PSH	380 238 39%						
With FS&AS PSH	275	343	55%				

California: PSH Provisions of System Reserves in 2022

Baseline RE scenario:

	Base - I	No PSH	With F	S PSH	With FS	&AS PSH	
Base Renewable		PSH		PSH		PSH	
Scenario	Total Req.	Provision	Total Req.	Provision	Total Req.	Provision	
	(GWh)	(GWh)	(GWh)	(GWh)	(GWh)	(GWh)	
Non-Spinning							
Reserve	8,505	-	8,505	7,090	8,505	7,905	
Spinning Reserve	8,505	-	8,505	224	8,505	2,463	
Flexibility Down	3,130	-	3,130	47	3,130	1,098	
Flexibility Up	3,130	•	3,130	13	3,130	341	flexible pumping
Regulation Down	3,810	-	3,810	171	3,810	1,264	
Regulation Up	3,839	-	3,839	164	3,839	1,109	

High-Wind RE scenario:

High-Wind	Base - I	No PSH	With I	S PSH	With FS	&AS PSH
Renewable Scenario	Total Req. (GWh)	PSH Provision (GWh)	Total Req. (GWh)	PSH Provision (GWh)	Total Req. (GWh)	PSH Provision (GWh)
Non-Spinning						
Reserve	8,505	-	8,505	4,774	8,505	5,492
Spinning Reserve	8,505	-	8,505	247	8,505	2,022
Flexibility Down	4,804	-	4,804	141	4,804	1,934
Flexibility Up	4,804	-	4,804	26	4,804	200
Regulation Down	4,394	-	4,394	377	4,394	1,761
Regulation Up	4,442	_	4,442	144	4,442	1,201

California: System Emissions in 2022

Baseline RE scenario:

Base							Er	nissio	n
Renewable	CO2	NOx	SO2	Emission F	Reductio	on (ton)	Redu	ıction	(%)
Scenario	Ton	ton	ton	CO2	NOx	SO2	CO2	NOx	SO2
No PSH	65,429,529	53,681	6,006	-	-	-	0.0%	0.0%	0.0%
With FS PSH	64,741,362	53,512	6,093	688,166	170	(87)	1.1%	0.3%	-1.5%
With FS&AS									
PSH	64,625,964	53,568	6,165	803,565	113	(160)	1.2%	0.2%	-2.7%

High-Wind RE scenario:

High-Wind							Er	nissio	n
Renewable	CO2	NOx	SO2	Emission F	Reductio	on (ton)	Redu	uction	(%)
Scenario	Ton	ton	ton	CO2	NOx	SO2	CO2	NOx	SO2
No PSH	51,515,736	44,936	5,334	-	-	-	0.0%	0.0%	0.0%
With FS PSH	49,692,105	44,010	5,350	1,823,631	925	(16)	3.5%	2.1%	-0.3%
With FS&AS									
PSH	47,904,187	43,177	5,427	3,611,549	1,759	(93)	7.0%	3.9%	-1.7%

PSH plants reduce CO2 and NOx emissions under both scenarios

California: Thermal Generator Cycling in 2022

Baseline RE scenario:

Base Renewable Scenario	Total Number of Thermal Starts		Cost Re	duction
Scendilo		\$ Million	\$ Million	%
No PSH	18,514	56	-	-
With FS PSH	14,646	46	10	17.35%
With FS&AS PSH	12,134	36	20	35.40%

High-Wind RE scenario:

High-Wind Renewable Scenario	Total Number of Thermal Starts		Cost Re	duction
Reflewable Scenario		\$ Million	\$ Million	%
No PSH	17,862	54	1	-
With FS PSH	14,351	44	11	19.56%
With FS&AS PSH	11,864	35	20	36.42%

FS & AS PSH plants reduce cycling cost of thermal units by one third

California: Thermal Generator Ramping in 2022

■ Baseline RE scenario:

Base Renewable Scenario	Total Thermal Generator Ramp Up	Total Thermal Generator Ramp Down	Ramp Up	Reduction		Down action
	GW	GW	GW	%	GW	%
No PSH	4,273	6,603	-	-	-	-
With FS PSH	3,623	5,552	650	15.20%	1,052	15.93%
With FS&AS PSH	2,924	4,456	1,349	31.56%	2,147	32.51%

High-Wind RE scenario:

Ramping of thermal units reduced by one third

High-Wind Renewable Scenario	Total Thermal Generator Ramp Up	Total Thermal Generator Ramp Down	Ramp Up F	Reduction	-	Down uction
	GW	GW	GW	%	GW	%
No PSH	3,609	5,681	-	-	-	-
With FS PSH	3,078	4,737	531	14.71%	945	16.63%
With FS&AS PSH	2,396	3,738	1,214	33.63%	1,943	34.20%

Ramping of thermal units reduced by one third

California: Regional LMPs in 2022 Are Significantly Lower under High-Wind RE Scenario

Baseline RE scenario:

Average LMPs: 27-30 \$/MWh

High-Wind RE scenario:

Average LMPs: 13-16 \$/MWh

PSH Provides Load for RE Generation during Off-Peak Hours (Reduces RE Curtailments and Negative LMPs)

SCE LMPs in the Week of July 17, 2022 for High-Wind Renewable Scenario

California: 3-Stage DA-HA-RT Modeling

- Detailed simulation (5-minute time step in RT simulations) of four typical weeks in different seasons of 2022 under High-Wind RE scenario
- Simulated: 3rd weeks of January, April, July, and October
- 3rd week in July is the peak load week

3-Stage Sequential Simulation

Results for Start and Shutdown Costs under High-Wind Scenario

California: Summary of 3-Stage DA-HA-RT Modeling Results

Summary of 5-minute RT simulation results for High-Wind renewable generation scenario

High-Wind	Average Cost Savings or Decrease in Ramping Needs over the Four Simulated Typical Weeks in 2022						
Renewable	System	Startup and	Ramp Up of	Ramp Down of			
Scenario	Production Costs	Shutdown Costs	Thermal Generators	Thermal Generators			
	%	%	%	%			
No PSH	-	-	-	-			
With FS PSH	5.01	27.58	9.76	15.10			
With FS&AS							
PSH	7.27	41.67	33.05	64.16			

